作為一名默默奉獻的教育工作者,通常需要用到教案來輔助教學,借助教案可以讓教學工作更科學化。優(yōu)秀的教案都具備一些什么特點呢?又該怎么寫呢?下面是小編為大家?guī)淼膬?yōu)秀教案范文,希望大家可以喜歡。
初一數(shù)學有理數(shù)的教案篇一
1.內(nèi)容
有理數(shù)乘法法則.
2.內(nèi)容解析
有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算.有理數(shù)乘法既是有理數(shù)運算的深入,又是進一步學習有理數(shù)的除法、乘方的基礎(chǔ),對后續(xù)代數(shù)學習是至關(guān)重要的.
與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運算律保持不變”.本節(jié)課要在小學已掌握的乘法運算的基礎(chǔ)上,通過合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負數(shù)、負數(shù)乘負數(shù)時仍然成立,那么運算結(jié)果應(yīng)該是什么”的結(jié)論,從而使學生體會乘法法則的合理性.與加法法則一樣,正數(shù)乘負數(shù)、負數(shù)乘負數(shù)的法則,也要從符號和絕對值來分析.由于絕對值相乘就是非負數(shù)相乘,因此,這里關(guān)鍵是要規(guī)定好含有負數(shù)的兩數(shù)相乘之積的符號,這是有理數(shù)乘法的本質(zhì)特征,也是乘法法則的核心.
基于以上分析,可以確定本課的教學重點是兩個有理數(shù)相乘的符號法則.
二、目標及其解析
1.目標
(1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計算兩個數(shù)的乘法.
(2)能說出有理數(shù)乘法的符號法則,能用例子說明法則的合理性.
2.目標解析
達成目標(1)的標志是學生在進行兩個有理數(shù)乘法運算時,能按照乘法法則,先考慮兩乘數(shù)的符號,再考慮兩乘數(shù)的絕對值,并得出正確的結(jié)果.
達成目標(2)的標志是學生能通過具體例子說明有理數(shù)乘法的符號法則的歸納過程.
三、教學問題診斷分析
有理數(shù)的乘法與小學學習的乘法的區(qū)別在于負數(shù)參與了運算.本課要以正數(shù)、0之間的運算為基礎(chǔ),構(gòu)造一組有規(guī)律的算式,先讓學生從算式左右各數(shù)的符號和絕對值兩個角度觀察這些算式的共同特點并得出規(guī)律,再以問題“要使這個規(guī)律在引入負數(shù)后仍然成立,那么應(yīng)有……”為引導,讓學生思考在這樣的規(guī)律下,正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、兩個負數(shù)相乘各應(yīng)有什么運算結(jié)果,并從積的符號和絕對值兩個角度總結(jié)出規(guī)律,進而給出有理數(shù)乘法法則,在這個過程中體會規(guī)定的合理性.上述過程中,學生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會出現(xiàn)困難.為了解決這些困難,教師應(yīng)該在“如何觀察”上加強指導,并明確提出“從符號和絕對值兩個角度看規(guī)律”的要求.
本課的教學難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律.
四、教學過程設(shè)計
教師引導學生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、負數(shù)乘負數(shù).
設(shè)計意圖:有理數(shù)分為正數(shù)、零、負數(shù),由此引出兩個有理數(shù)相乘的幾種情況,既復習有關(guān)知識,為下面的教學做好準備,又滲透了分類討論思想.
問題2下面從我們熟悉的乘法運算開始.觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追問1:你認為問題要我們“觀察”什么?應(yīng)該從哪幾個角度去觀察、發(fā)現(xiàn)規(guī)律?
如果學生仍然有困難,教師給予提示:
(1)四個算式有什么共同點?——左邊都有一個乘數(shù)3.
(2)其他兩個數(shù)有什么變化規(guī)律?——隨著后一個乘數(shù)逐次遞減1,積逐次遞減3.
設(shè)計意圖:構(gòu)造這組有規(guī)律的算式,為通過合情推理,得到正數(shù)乘負數(shù)的法則做準備.通過追問、提示,使學生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”.
教師:要使這個規(guī)律在引入負數(shù)后仍然成立,那么,3×(-1)=-3,這是因為后一乘數(shù)從0遞減1就是-1,因此積應(yīng)該從0遞減3而得-3.
追問2:根據(jù)這個規(guī)律,下面的兩個積應(yīng)該是什么?
3×(-2)=,
3×(-3)=.
練習:請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
設(shè)計意圖:讓學生自主構(gòu)造算式,加深對運算規(guī)律的理解.
先讓學生觀察、敘述、補充,教師再總結(jié):都是正數(shù)乘負數(shù),積都為負數(shù),積的.絕對值等于各乘數(shù)絕對值的積.
設(shè)計意圖:先得到一類情況的結(jié)果,降低歸納概括的難度,同時也為后面的學習奠定基礎(chǔ).
問題3觀察下列算式,類比上述過程,你又能發(fā)現(xiàn)什么規(guī)律?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
鼓勵學生模仿正數(shù)乘負數(shù)的過程,自己獨立得出規(guī)律.
設(shè)計意圖:為得到負數(shù)乘正數(shù)的結(jié)論做準備;培養(yǎng)學生的模仿、概括的能力.
追問1:要使這個規(guī)律在引入負數(shù)后仍然成立,你認為下面的空格應(yīng)各填什么數(shù)?
(-1)×3=,
(-2)×3=,
(-3)×3=.
練習:請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
先讓學生觀察、敘述、補充,教師再總結(jié):都是負數(shù)乘正數(shù),積都為負數(shù),積的絕對值等于各乘數(shù)絕對值的積.
追問3:正數(shù)乘負數(shù)、負數(shù)乘正數(shù)兩種情況下的結(jié)論有什么共性?你能把它概括出來嗎?
設(shè)計意圖:讓學生模仿已有的討論過程,自己得出負數(shù)乘正數(shù)的結(jié)論,并進一步概括出“異號兩數(shù)相乘,積的符號為負,積的絕對值等于各乘數(shù)絕對值的積”.既使學生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力.
問題4利用上面歸納的結(jié)論計算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?
(-3)×3=,
(-3)×2=,
(-3)×1=,
(-3)×0=.
追問1:按照上述規(guī)律填空,并說說其中有什么規(guī)律?
(-3)×(-1)=,
(-3)×(-2)=,
(-3)×(-3)=.
設(shè)計意圖:由學生自主探究得出負數(shù)乘負數(shù)的結(jié)論.因為有前面積累的豐富經(jīng)驗,學生能獨立完成.
問題5總結(jié)上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?
學生獨立思考后進行課堂交流,師生共同完成,得出結(jié)論后再讓學生看教科書.
學生獨立思考、回答.如果有困難,可先讓學生看課本第29頁有理數(shù)乘法法則后面的一段文字.
設(shè)計意圖:讓學生嘗試歸納乘法法則,明確按法則計算的關(guān)鍵步驟.
例1計算:
(1)
;(2)
;(3)
.
學生獨立完成后,全班交流.
教師說明:在(3)中,我們得到了
=1.與以前學習過的倒數(shù)概念一樣,我們說
與-2互為倒數(shù).一般地,在有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù).
追問:在(2)中,8和-8互為相反數(shù).由此,你能說說如何得到一個數(shù)的相反數(shù)嗎?
設(shè)計意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因為這個概念很容易理解),同時說明了求一個數(shù)的相反數(shù)與乘-1之間的關(guān)系(反過來有-8=8×(―1)).
設(shè)計意圖:利用有理數(shù)乘法解決實際問題,體現(xiàn)數(shù)學的應(yīng)用價值.
小結(jié)、布置作業(yè)
請同學們帶著下列問題回顧本節(jié)課的內(nèi)容:
(1)你能說出有理數(shù)乘法法則嗎?
(2)用有理數(shù)乘法法則進行兩個有理數(shù)的乘法運算的基本步驟是什么?
(3)舉例說明如何從正數(shù)、0的乘法運算出發(fā),歸納出正數(shù)乘負數(shù)的法則.
(4)你能舉例說明符號法則“負負得正”的合理性嗎?
設(shè)計意圖:引導學生從知識內(nèi)容和學習過程兩個方面進行小結(jié).
作業(yè):教科書第30頁,練習1,2,3;第37頁,習題1.4第1題.
五、目標檢測設(shè)計
1.判斷下列運算結(jié)果的符號:
(1)5×(-3);
(2)(-3)×3;
(3)(-2)×(-7);
(4)(+0.5)×(+0.7).
設(shè)計意圖:檢測學生對有理數(shù)乘法的符號法則的理解.
2計算:
(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);
(4)
;(5)0×(-6);(6)8×
.
設(shè)計意圖:檢測學生對有理數(shù)乘法法則的理解情況.
初一數(shù)學有理數(shù)的教案篇二
同號兩數(shù)相加,取與加數(shù)相同的符號,并把絕對值相加。
異號兩數(shù)相加,若絕對值相等則互為相反數(shù)的兩數(shù)和為0;若絕對值不相等,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
互為相反數(shù)的兩數(shù)相加得0。
一個數(shù)同0相加仍得這個數(shù)。
互為相反數(shù)的兩個數(shù),可以先相加。
符號相同的數(shù)可以先相加。
分母相同的數(shù)可以先相加。
幾個數(shù)相加能得整數(shù)的可以先相加。
減法運算
減去一個數(shù),等于加上這個數(shù)的相反數(shù),即把有理數(shù)的減法利用數(shù)的相反數(shù)變成加法進行運算。
乘法運算
同號得正,異號得負,并把絕對值相乘。
任何數(shù)與零相乘,都得零。
幾個不等于零的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個時,積為負,當負因數(shù)有偶數(shù)個時,積為正。
幾個數(shù)相乘,有一個因數(shù)為零,積就為零。
幾個不等于零的數(shù)相乘,首先確定積的符號,然后后把絕對值相乘。
除法運算
除以一個不等于零的數(shù),等于乘這個數(shù)的倒數(shù)。
兩數(shù)相除,同號得正,異號得負,并把絕對值相除。零除以任意一個不等于零的數(shù),都得零。
注意:
零不能做除數(shù)和分母。
有理數(shù)的除法與乘法是互逆運算。
在做除法運算時,根據(jù)同號得正,異號得負的法則先確定符號,再把絕對值相除。若在算式中帶有帶分數(shù),一般先化成假分數(shù)進行計算。若不能整除,則除法運算都轉(zhuǎn)化為乘法運算。
乘方運算
負數(shù)的奇數(shù)次冪是負數(shù),負數(shù)的偶數(shù)次冪是正數(shù)。例如:(-2)3(-2的3次方)=-8,(-2)2(-2的2次方)=4。
正數(shù)的任何次冪都是正數(shù),零的任何正數(shù)次冪都是零。例如:2(2的2次方)=4,2(2的3次方)=8,0(0的3次方)=0。
零的零次冪無意義。
由于乘方是乘法的特例,因此有理數(shù)的乘方運算可以用有理數(shù)的乘法運算完成。
1的任何次冪都是1,-1的偶次冪是1,奇次冪是-1。
初一數(shù)學有理數(shù)的教案篇三
今天我上了一節(jié)課,課后覺得有很多不盡人意的地方。自己發(fā)現(xiàn)無論是在組織課堂方面,還是在教學難點的突破上,以及在時間分配上,都感到力不從心。現(xiàn)在將上課后的反思總結(jié)如下:
上課一開始我通過三個選擇題復習有理數(shù)的各種運算法則和運算律,目的在于克服學生平時經(jīng)常出現(xiàn)的錯誤。然后進行三個基礎(chǔ)性的計算題,鞏固有理數(shù)混合運算的運算順序和法則,接下來解一道比較復雜的計算題,涉及的運算比較全面,但是在上課中學生出錯的比較多,我想如果再加強幾個訓練題效果可能會好一些,但是考慮到后面還有任務(wù),所以效果不很理想。
后面的教學中,第一道題是用四個有理數(shù)去計算24,教材上有類似的題目,對有理數(shù)的混合運算提出了更高的要求,而且能激發(fā)學生的學習興趣,提高學生學習數(shù)學的積極性,他們表現(xiàn)的很活躍。
其次要站在更高的角度去認識教材,站在平等的角度去對待學生。認真鉆研教材,增加自己的知識儲備量,把教材鉆深、吃透真正理解教材的本意,然后去發(fā)展、延伸,只有這樣才能達到事半功倍的效果,教師不能只停留在教材的表面,知其義而不知其理,這樣只能是依樣畫瓢。
再就是我覺得不能以教師的眼光去看學生,要和他們站在同一高度上去看待問題,發(fā)現(xiàn)學生出錯的真正原因,共同去解決出現(xiàn)的問題。我們做教師的往往認為一道題很簡單,學生為什么不會,不理解,殊不知是在用十幾年甚至是幾十年的經(jīng)驗去和剛開始學習的兒童去比較。
教學工作是一項需要不斷探索研究的事情,需要一如既往的熱情和不斷進取的上進心,在以后的工作中要不斷總結(jié)經(jīng)驗教訓,跟上不斷發(fā)展變化的教育新形勢。
初一數(shù)學有理數(shù)的教案篇四
講解有理數(shù)概念這一節(jié)課的時候,我講完課讓學生做作業(yè),結(jié)果一塌糊涂。一問學生,學生說不知道什么是有理數(shù),我當時有一種很強的挫敗感。他們分不清什么是整數(shù),什么是分數(shù),對于小數(shù)和分數(shù)的界限也搞不清楚,一看到要從幾個數(shù)當中去找整數(shù),分數(shù),小數(shù),有理數(shù)之類的題目就感覺無從下手。因為我想把知識給他們講清楚,卻沒想到我忽略掉了一點,他們現(xiàn)在還小,邏輯思維的能力還不是很強,必須首先讓他們先區(qū)分整數(shù)和分數(shù)。
通過本節(jié)課的教學,我感觸很深。初一的學生,剛從小學生變成一個中學生,對于知識的理解和接受大多還停留在小學生的水平上,他們善于思考,但是卻把握不好思考的方向,而我們教師很容易犯的一個錯誤就是對于知識的深淺拿捏不好,一不小心就又把知識講深了。另外,我對新課程理念所提倡的以學生為主體,充分發(fā)揮學生的主動性這一點貫徹的有些不到位。一節(jié)課的時間,只有40分鐘,除去課前準備,上課的板演時間,上課的'時候提問學生,提問成績好的學生,起不到什么作用。提問成績不好的學生,等半天還是回答不上來,有時等不及學生說出答案就自己把答案說出來了,有時一節(jié)課學生動手動口的機會真的不多。唉,我也不斷反思,想辦法,希望以后這樣的事件在我的課堂上能越來越少!
初一數(shù)學有理數(shù)的教案篇五
一、教學目標:
1、認知目標
正確理解乘方、冪、指數(shù)、底數(shù)等概念,在現(xiàn)實背景中理解有理數(shù)乘方的意義,會進行有理數(shù)乘方的運算。
2、能力目標
(1).通過對乘方意義的理解,培養(yǎng)學生觀察、比較、分析、歸納、概括的能力,滲透轉(zhuǎn)化的數(shù)學思想。
(2).使學生能夠靈活地進行乘方運算。
3、情感目標
讓學生體會數(shù)學與生活的密切聯(lián)系,培養(yǎng)學生靈活處理現(xiàn)實問題的能力。
二、教學重難點和關(guān)鍵:
1、教學重點:正確理解乘方的意義,掌握乘方運算法則。
2、教學難點:正確理解乘方、底數(shù)、指數(shù)的概念,并合理運算,
3、教學關(guān)鍵:弄清底數(shù)、指數(shù)、冪等概念,區(qū)分-an與(-a)n的意義。
三、教學方法
考慮到七年級學生的認知水平和結(jié)構(gòu)以及思維活動特點,本節(jié)課采用多媒體直觀教學法,聯(lián)想比較、發(fā)現(xiàn)教學法,設(shè)疑思考法,逐步滲透法和師生交流相結(jié)合的方法。
四、教學過程:
1、創(chuàng)設(shè)情境,導入新課:
這一章我們主要學習了有理數(shù)的計算,其實有理數(shù)的計算在生活中無處不在。有一種游戲叫“算24點”,它是一種常見的撲克牌游戲,不知道大家有沒有玩過?那我們現(xiàn)在約定撲克牌中黑色數(shù)字為正,紅色數(shù)字為負,每次抽取4張,用加、減、乘、除四種運算使結(jié)果為24。
師:假如我現(xiàn)在抽取的是黑3紅3黑4紅5(幻燈片放映圖片)如何算24?
師:如果四張都是3呢?
生答:-3-3×3×(-3)=
師:現(xiàn)在老師把撲克牌拿掉一張紅3,變成2個黑3,1個紅3,大家有辦法湊成24嗎?
生:思考幾分鐘后,有同學會想出的答案
師:觀察這個式子,有我們以前學過的3次方運算,那它是不是乘法運算?可以告訴大家,它是一種乘方運算,那是不是所有的乘方運算都是乘法運算,它與乘法運算又有怎樣的關(guān)系?那我們今天就一起來研究“有理數(shù)的乘方”,相信學過之后,對你解決心中的疑問會有很大的幫助。(自然引入新課)
2、動手實踐,共同探索乘方的定義
學生活動:請同學們拿出一張紙進行對折,再對折
問題:(1)對折一次有幾層?2
(2)對折二次有幾層?
(3)對折三次有幾層?
(4)對折四次有幾層?
師:一直對折下去,你會發(fā)現(xiàn)什么?
生:每一次都是前面的2倍。
師:請同學們猜想:對折20次有幾層?怎樣去列式?
生:20個2相乘
師:寫起來很麻煩,既浪費時間又浪費空間,有沒有簡單記法?
簡記:……
師:請同學們總結(jié)對折n次有幾層?可以簡記為什么?
2×2×2×2……×2
shapemergeformat
n個2
生:可簡記為:
師:猜想:生:
師:怎樣讀呢?生:讀作的次方
的因數(shù)),叫做指數(shù)(相同因數(shù)的個數(shù))。
注意:乘方是一種運算,冪是乘方運算的結(jié)果??醋魇堑拇畏降慕Y(jié)果時,也可讀作的次冪。